Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

An All-Around Near-Optimal Solution for the Classic Bin Packing Problem (1404.4526v1)

Published 17 Apr 2014 in cs.DS

Abstract: In this paper we present the first algorithm with optimal average-case and close-to-best known worst-case performance for the classic on-line problem of bin packing. It has long been observed that known bin packing algorithms with optimal average-case performance were not optimal in the worst-case sense. In particular First Fit and Best Fit had optimal average-case ratio of 1 but a worst-case competitive ratio of 1.7. The wasted space of First Fit and Best Fit for a uniform random sequence of length $n$ is expected to be $\Theta(n{2/3})$ and $\Theta(\sqrt{n} \log {3/4} n)$, respectively. The competitive ratio can be improved to 1.691 using the Harmonic algorithm; further variations of this algorithm can push down the competitive ratio to 1.588. However, Harmonic and its variations have poor performance on average; in particular, Harmonic has average-case ratio of around 1.27. In this paper, first we introduce a simple algorithm which we term Harmonic Match. This algorithm performs as well as Best Fit on average, i.e., it has an average-case ratio of 1 and expected wasted space of $\Theta(\sqrt{n} \log {3/4} n)$. Moreover, the competitive ratio of the algorithm is as good as Harmonic, i.e., it converges to $ 1.691$ which is an improvement over 1.7 of Best Fit and First Fit. We also introduce a different algorithm, termed as Refined Harmonic Match, which achieves an improved competitive ratio of $1.636$ while maintaining the good average-case performance of Harmonic Match and Best Fit. Finally, our extensive experimental evaluation of the studied bin packing algorithms shows that our proposed algorithms have comparable average-case performance with Best Fit and First Fit, and this holds also for sequences that follow distributions other than the uniform distribution.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube