Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Rainbow Colouring of Split Graphs (1404.4478v1)

Published 17 Apr 2014 in cs.DM, cs.CC, and math.CO

Abstract: A rainbow path in an edge coloured graph is a path in which no two edges are coloured the same. A rainbow colouring of a connected graph G is a colouring of the edges of G such that every pair of vertices in G is connected by at least one rainbow path. The minimum number of colours required to rainbow colour G is called its rainbow connection number. Between them, Chakraborty et al. [J. Comb. Optim., 2011] and Ananth et al. [FSTTCS, 2012] have shown that for every integer k, k \geq 2, it is NP-complete to decide whether a given graph can be rainbow coloured using k colours. A split graph is a graph whose vertex set can be partitioned into a clique and an independent set. Chandran and Rajendraprasad have shown that the problem of deciding whether a given split graph G can be rainbow coloured using 3 colours is NP-complete and further have described a linear time algorithm to rainbow colour any split graph using at most one colour more than the optimum [COCOON, 2012]. In this article, we settle the computational complexity of the problem on split graphs and thereby discover an interesting dichotomy. Specifically, we show that the problem of deciding whether a given split graph can be rainbow coloured using k colours is NP-complete for k \in {2,3}, but can be solved in polynomial time for all other values of k.

Citations (7)

Summary

We haven't generated a summary for this paper yet.