Papers
Topics
Authors
Recent
Search
2000 character limit reached

Generic Object Detection With Dense Neural Patterns and Regionlets

Published 16 Apr 2014 in cs.CV | (1404.4316v1)

Abstract: This paper addresses the challenge of establishing a bridge between deep convolutional neural networks and conventional object detection frameworks for accurate and efficient generic object detection. We introduce Dense Neural Patterns, short for DNPs, which are dense local features derived from discriminatively trained deep convolutional neural networks. DNPs can be easily plugged into conventional detection frameworks in the same way as other dense local features(like HOG or LBP). The effectiveness of the proposed approach is demonstrated with the Regionlets object detection framework. It achieved 46.1% mean average precision on the PASCAL VOC 2007 dataset, and 44.1% on the PASCAL VOC 2010 dataset, which dramatically improves the original Regionlets approach without DNPs.

Citations (66)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.