Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 30 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Generalized Second Price Auction with Probabilistic Broad Match (1404.3828v1)

Published 15 Apr 2014 in cs.GT

Abstract: Generalized Second Price (GSP) auctions are widely used by search engines today to sell their ad slots. Most search engines have supported broad match between queries and bid keywords when executing GSP auctions, however, it has been revealed that GSP auction with the standard broad-match mechanism they are currently using (denoted as SBM-GSP) has several theoretical drawbacks (e.g., its theoretical properties are known only for the single-slot case and full-information setting, and even in this simple setting, the corresponding worst-case social welfare can be rather bad). To address this issue, we propose a novel broad-match mechanism, which we call the Probabilistic Broad-Match (PBM) mechanism. Different from SBM that puts together the ads bidding on all the keywords matched to a given query for the GSP auction, the GSP with PBM (denoted as PBM-GSP) randomly samples a keyword according to a predefined probability distribution and only runs the GSP auction for the ads bidding on this sampled keyword. We perform a comprehensive study on the theoretical properties of the PBM-GSP. Specifically, we study its social welfare in the worst equilibrium, in both full-information and Bayesian settings. The results show that PBM-GSP can generate larger welfare than SBM-GSP under mild conditions. Furthermore, we also study the revenue guarantee for PBM-GSP in Bayesian setting. To the best of our knowledge, this is the first work on broad-match mechanisms for GSP that goes beyond the single-slot case and the full-information setting.

Citations (12)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.