Papers
Topics
Authors
Recent
Search
2000 character limit reached

A strong restricted isometry property, with an application to phaseless compressed sensing

Published 15 Apr 2014 in cs.IT, math.IT, and math.NA | (1404.3811v1)

Abstract: The many variants of the restricted isometry property (RIP) have proven to be crucial theoretical tools in the fields of compressed sensing and matrix completion. The study of extending compressed sensing to accommodate phaseless measurements naturally motivates a strong notion of restricted isometry property (SRIP), which we develop in this paper. We show that if $A \in \mathbb{R}{m\times n}$ satisfies SRIP and phaseless measurements $|Ax_0| = b$ are observed about a $k$-sparse signal $x_0 \in \mathbb{R}n$, then minimizing the $\ell_1$ norm subject to $ |Ax| = b $ recovers $x_0$ up to multiplication by a global sign. Moreover, we establish that the SRIP holds for the random Gaussian matrices typically used for standard compressed sensing, implying that phaseless compressed sensing is possible from $O(k \log (n/k))$ measurements with these matrices via $\ell_1$ minimization over $|Ax| = b$. Our analysis also yields an erasure robust version of the Johnson-Lindenstrauss Lemma.

Citations (48)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.