Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

A strong restricted isometry property, with an application to phaseless compressed sensing (1404.3811v1)

Published 15 Apr 2014 in cs.IT, math.IT, and math.NA

Abstract: The many variants of the restricted isometry property (RIP) have proven to be crucial theoretical tools in the fields of compressed sensing and matrix completion. The study of extending compressed sensing to accommodate phaseless measurements naturally motivates a strong notion of restricted isometry property (SRIP), which we develop in this paper. We show that if $A \in \mathbb{R}{m\times n}$ satisfies SRIP and phaseless measurements $|Ax_0| = b$ are observed about a $k$-sparse signal $x_0 \in \mathbb{R}n$, then minimizing the $\ell_1$ norm subject to $ |Ax| = b $ recovers $x_0$ up to multiplication by a global sign. Moreover, we establish that the SRIP holds for the random Gaussian matrices typically used for standard compressed sensing, implying that phaseless compressed sensing is possible from $O(k \log (n/k))$ measurements with these matrices via $\ell_1$ minimization over $|Ax| = b$. Our analysis also yields an erasure robust version of the Johnson-Lindenstrauss Lemma.

Citations (48)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.