Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

A New Clustering Approach for Anomaly Intrusion Detection (1404.2772v1)

Published 10 Apr 2014 in cs.DC, cs.CR, and cs.LG

Abstract: Recent advances in technology have made our work easier compare to earlier times. Computer network is growing day by day but while discussing about the security of computers and networks it has always been a major concerns for organizations varying from smaller to larger enterprises. It is true that organizations are aware of the possible threats and attacks so they always prepare for the safer side but due to some loopholes attackers are able to make attacks. Intrusion detection is one of the major fields of research and researchers are trying to find new algorithms for detecting intrusions. Clustering techniques of data mining is an interested area of research for detecting possible intrusions and attacks. This paper presents a new clustering approach for anomaly intrusion detection by using the approach of K-medoids method of clustering and its certain modifications. The proposed algorithm is able to achieve high detection rate and overcomes the disadvantages of K-means algorithm.

Citations (68)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)