Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 194 tok/s Pro
GPT OSS 120B 432 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Efficient Advert Assignment (1404.2750v6)

Published 10 Apr 2014 in cs.GT, cs.SY, and math.OC

Abstract: We develop a framework for the analysis of large-scale Ad-auctions where adverts are assigned over a continuum of search types. For this pay-per-click market, we provide an efficient mechanism that maximizes social welfare. In particular, we show that the social welfare optimization can be solved in separate optimizations conducted on the time-scales relevant to the search platform and advertisers. Here, on each search occurrence, the platform solves an assignment problem and, on a slower time-scale, each advertiser submits a bid which matches its demand for click-throughs with supply. Importantly, knowledge of global parameters, such as the distribution of search terms, is not required when separating the problem in this way. Exploiting the information asymmetry between the platform and advertiser, we describe a simple mechanism which incentivizes truthful bidding and has a unique Nash equilibrium that is socially optimal, and thus implements our decomposition. Further, we consider models where advertisers adapt their bids smoothly over time, and prove convergence to the solution that maximizes social welfare. Finally, we describe several extensions which illustrate the flexibility and tractability of our framework.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.