Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Concave Switching in Single and Multihop Networks (1404.2725v1)

Published 10 Apr 2014 in cs.SY, cs.NI, math.OC, and math.PR

Abstract: Switched queueing networks model wireless networks, input queued switches and numerous other networked communications systems. For single-hop networks, we consider a {($\alpha,g$)-switch policy} which combines the MaxWeight policies with bandwidth sharing networks -- a further well studied model of Internet congestion. We prove the maximum stability property for this class of randomized policies. Thus these policies have the same first order behavior as the MaxWeight policies. However, for multihop networks some of these generalized polices address a number of critical weakness of the MaxWeight/BackPressure policies. For multihop networks with fixed routing, we consider the Proportional Scheduler (or (1,log)-policy). In this setting, the BackPressure policy is maximum stable, but must maintain a queue for every route-destination, which typically grows rapidly with a network's size. However, this proportionally fair policy only needs to maintain a queue for each outgoing link, which is typically bounded in number. As is common with Internet routing, by maintaining per-link queueing each node only needs to know the next hop for each packet and not its entire route. Further, in contrast to BackPressure, the Proportional Scheduler does not compare downstream queue lengths to determine weights, only local link information is required. This leads to greater potential for decomposed implementations of the policy. Through a reduction argument and an entropy argument, we demonstrate that, whilst maintaining substantially less queueing overhead, the Proportional Scheduler achieves maximum throughput stability.

Citations (25)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)