Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Fast Structuring of Radio Networks for Multi-Message Communications (1404.2387v1)

Published 9 Apr 2014 in cs.NI and cs.DC

Abstract: We introduce collision free layerings as a powerful way to structure radio networks. These layerings can replace hard-to-compute BFS-trees in many contexts while having an efficient randomized distributed construction. We demonstrate their versatility by using them to provide near optimal distributed algorithms for several multi-message communication primitives. Designing efficient communication primitives for radio networks has a rich history that began 25 years ago when Bar-Yehuda et al. introduced fast randomized algorithms for broadcasting and for constructing BFS-trees. Their BFS-tree construction time was $O(D \log2 n)$ rounds, where $D$ is the network diameter and $n$ is the number of nodes. Since then, the complexity of a broadcast has been resolved to be $T_{BC} = \Theta(D \log \frac{n}{D} + \log2 n)$ rounds. On the other hand, BFS-trees have been used as a crucial building block for many communication primitives and their construction time remained a bottleneck for these primitives. We introduce collision free layerings that can be used in place of BFS-trees and we give a randomized construction of these layerings that runs in nearly broadcast time, that is, w.h.p. in $T_{Lay} = O(D \log \frac{n}{D} + \log{2+\epsilon} n)$ rounds for any constant $\epsilon>0$. We then use these layerings to obtain: (1) A randomized algorithm for gathering $k$ messages running w.h.p. in $O(T_{Lay} + k)$ rounds. (2) A randomized $k$-message broadcast algorithm running w.h.p. in $O(T_{Lay} + k \log n)$ rounds. These algorithms are optimal up to the small difference in the additive poly-logarithmic term between $T_{BC}$ and $T_{Lay}$. Moreover, they imply the first optimal $O(n \log n)$ round randomized gossip algorithm.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.