Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Fair channel allocation and access design for cognitive ad hoc networks (1404.1908v1)

Published 7 Apr 2014 in cs.NI

Abstract: We investigate the fair channel assignment and access design problem for cognitive radio ad hoc network in this paper. In particular, we consider a scenario where ad hoc network nodes have hardware constraints which allow them to access at most one channel at any time. We investigate a fair channel allocation problem where each node is allocated a subset of channels which are sensed and accessed periodically by their owners by using a MAC protocol. Toward this end, we analyze the complexity of the optimal brute-force search algorithm which finds the optimal solution for this NP-hard problem. We then develop low-complexity algorithms that can work efficiently with a MAC protocol algorithm, which resolves the access contention from neighboring secondary nodes. Also, we develop a throughput analytical model, which is used in the proposed channel allocation algorithm and for performance evaluation of its performance. Finally, we present extensive numerical results to demonstrate the efficacy of the proposed algorithms in achieving fair spectrum sharing among traffic flows in the network.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.