Gaussian Networks Generated by Random Walks (1404.1588v1)
Abstract: We propose a random walks based model to generate complex networks. Many authors studied and developed different methods and tools to analyze complex networks by random walk processes. Just to cite a few, random walks have been adopted to perform community detection, exploration tasks and to study temporal networks. Moreover, they have been used also to generate scale-free networks. In this work, we define a random walker that plays the role of "edges-generator". In particular, the random walker generates new connections and uses these ones to visit each node of a network. As result, the proposed model allows to achieve networks provided with a Gaussian degree distribution, and moreover, some features as the clustering coefficient and the assortativity show a critical behavior. Finally, we performed numerical simulations to study the behavior and the properties of the cited model.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.