Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Geometric Random Edge (1404.1568v5)

Published 6 Apr 2014 in cs.DS and cs.CG

Abstract: We show that a variant of the random-edge pivoting rule results in a strongly polynomial time simplex algorithm for linear programs $\max{cTx \colon Ax\leq b}$, whose constraint matrix $A$ satisfies a geometric property introduced by Brunsch and R\"oglin: The sine of the angle of a row of $A$ to a hyperplane spanned by $n-1$ other rows of $A$ is at least $\delta$. This property is a geometric generalization of $A$ being integral and all sub-determinants of $A$ being bounded by $\Delta$ in absolute value (since $\delta \geq 1/(\Delta2 n)$). In particular, linear programs defined by totally unimodular matrices are captured in this famework ($\delta \geq 1/ n$) for which Dyer and Frieze previously described a strongly polynomial-time randomized algorithm. The number of pivots of the simplex algorithm is polynomial in the dimension and $1/\delta$ and independent of the number of constraints of the linear program. Our main result can be viewed as an algorithmic realization of the proof of small diameter for such polytopes by Bonifas et al., using the ideas of Dyer and Frieze.

Citations (28)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube