Papers
Topics
Authors
Recent
2000 character limit reached

Fixed-parameter tractable canonization and isomorphism test for graphs of bounded treewidth (1404.0818v2)

Published 3 Apr 2014 in cs.DS and cs.CC

Abstract: We give a fixed-parameter tractable algorithm that, given a parameter $k$ and two graphs $G_1,G_2$, either concludes that one of these graphs has treewidth at least $k$, or determines whether $G_1$ and $G_2$ are isomorphic. The running time of the algorithm on an $n$-vertex graph is $2{O(k5\log k)}\cdot n5$, and this is the first fixed-parameter algorithm for Graph Isomorphism parameterized by treewidth. Our algorithm in fact solves the more general canonization problem. We namely design a procedure working in $2{O(k5\log k)}\cdot n5$ time that, for a given graph $G$ on $n$ vertices, either concludes that the treewidth of $G$ is at least $k$, or: * finds in an isomorphic-invariant way a graph $\mathfrak{c}(G)$ that is isomorphic to $G$; * finds an isomorphism-invariant construction term --- an algebraic expression that encodes $G$ together with a tree decomposition of $G$ of width $O(k4)$. Hence, the isomorphism test reduces to verifying whether the computed isomorphic copies or the construction terms for $G_1$ and $G_2$ are equal.

Citations (61)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.