Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 167 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 429 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Modelling the Self-similarity in Complex Networks Based on Coulomb's Law (1404.0530v1)

Published 1 Apr 2014 in cs.SI and physics.soc-ph

Abstract: Recently, self-similarity of complex networks have attracted much attention. Fractal dimension of complex network is an open issue. Hub repulsion plays an important role in fractal topologies. This paper models the repulsion among the nodes in the complex networks in calculation of the fractal dimension of the networks. The Coulomb's law is adopted to represent the repulse between two nodes of the network quantitatively. A new method to calculate the fractal dimension of complex networks is proposed. The Sierpinski triangle network and some real complex networks are investigated. The results are illustrated to show that the new model of self-similarity of complex networks is reasonable and efficient.

Citations (32)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.