Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 65 tok/s Pro
Kimi K2 186 tok/s Pro
GPT OSS 120B 439 tok/s Pro
Claude Sonnet 4.5 33 tok/s Pro
2000 character limit reached

Effective dimension in some general metric spaces (1404.0077v2)

Published 1 Apr 2014 in cs.CC, cs.IT, and math.IT

Abstract: We introduce the concept of effective dimension for a wide class of metric spaces that are not required to have a computable measure. Effective dimension was defined by Lutz in (Lutz 2003) for Cantor space and has also been extended to Euclidean space. Lutz effectivization uses the concept of gale and supergale, our extension of Hausdorff dimension to other metric spaces is also based on a supergale characterization of dimension, which in practice avoids an extra quantifier present in the classical definition of dimension that is based on Hausdorff measure and therefore allows effectivization for small time-bounds. We present here the concept of constructive dimension and its characterization in terms of Kolmogorov complexity, for which we extend the concept of Kolmogorov complexity to any metric space defining the Kolmogorov complexity of a point at a certain precision. Further research directions are indicated.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.