Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 159 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 118 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Sparse K-Means with $\ell_{\infty}/\ell_0$ Penalty for High-Dimensional Data Clustering (1403.7890v1)

Published 31 Mar 2014 in stat.ML, cs.LG, and stat.ME

Abstract: Sparse clustering, which aims to find a proper partition of an extremely high-dimensional data set with redundant noise features, has been attracted more and more interests in recent years. The existing studies commonly solve the problem in a framework of maximizing the weighted feature contributions subject to a $\ell_2/\ell_1$ penalty. Nevertheless, this framework has two serious drawbacks: One is that the solution of the framework unavoidably involves a considerable portion of redundant noise features in many situations, and the other is that the framework neither offers intuitive explanations on why this framework can select relevant features nor leads to any theoretical guarantee for feature selection consistency. In this article, we attempt to overcome those drawbacks through developing a new sparse clustering framework which uses a $\ell_{\infty}/\ell_0$ penalty. First, we introduce new concepts on optimal partitions and noise features for the high-dimensional data clustering problems, based on which the previously known framework can be intuitively explained in principle. Then, we apply the suggested $\ell_{\infty}/\ell_0$ framework to formulate a new sparse k-means model with the $\ell_{\infty}/\ell_0$ penalty ($\ell_0$-k-means for short). We propose an efficient iterative algorithm for solving the $\ell_0$-k-means. To deeply understand the behavior of $\ell_0$-k-means, we prove that the solution yielded by the $\ell_0$-k-means algorithm has feature selection consistency whenever the data matrix is generated from a high-dimensional Gaussian mixture model. Finally, we provide experiments with both synthetic data and the Allen Developing Mouse Brain Atlas data to support that the proposed $\ell_0$-k-means exhibits better noise feature detection capacity over the previously known sparse k-means with the $\ell_2/\ell_1$ penalty ($\ell_1$-k-means for short).

Citations (17)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube