Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Adaptive Linear Programming Decoding of Polar Codes (1403.7851v2)

Published 31 Mar 2014 in cs.IT and math.IT

Abstract: Polar codes are high density parity check codes and hence the sparse factor graph, instead of the parity check matrix, has been used to practically represent an LP polytope for LP decoding. Although LP decoding on this polytope has the ML-certificate property, it performs poorly over a BAWGN channel. In this paper, we propose modifications to adaptive cut generation based LP decoding techniques and apply the modified-adaptive LP decoder to short blocklength polar codes over a BAWGN channel. The proposed decoder provides significant FER performance gain compared to the previously proposed LP decoder and its performance approaches that of ML decoding at high SNRs. We also present an algorithm to obtain a smaller factor graph from the original sparse factor graph of a polar code. This reduced factor graph preserves the small check node degrees needed to represent the LP polytope in practice. We show that the fundamental polytope of the reduced factor graph can be obtained from the projection of the polytope represented by the original sparse factor graph and the frozen bit information. Thus, the LP decoding time complexity is decreased without changing the FER performance by using the reduced factor graph representation.

Citations (9)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.