Papers
Topics
Authors
Recent
2000 character limit reached

Auto-encoders: reconstruction versus compression (1403.7752v2)

Published 30 Mar 2014 in cs.NE, cs.IT, cs.LG, and math.IT

Abstract: We discuss the similarities and differences between training an auto-encoder to minimize the reconstruction error, and training the same auto-encoder to compress the data via a generative model. Minimizing a codelength for the data using an auto-encoder is equivalent to minimizing the reconstruction error plus some correcting terms which have an interpretation as either a denoising or contractive property of the decoding function. These terms are related but not identical to those used in denoising or contractive auto-encoders [Vincent et al. 2010, Rifai et al. 2011]. In particular, the codelength viewpoint fully determines an optimal noise level for the denoising criterion.

Citations (21)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Sign up for free to view the 1 tweet with 1 like about this paper.