Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

DimmWitted: A Study of Main-Memory Statistical Analytics (1403.7550v3)

Published 28 Mar 2014 in cs.DB, cs.LG, math.OC, and stat.ML

Abstract: We perform the first study of the tradeoff space of access methods and replication to support statistical analytics using first-order methods executed in the main memory of a Non-Uniform Memory Access (NUMA) machine. Statistical analytics systems differ from conventional SQL-analytics in the amount and types of memory incoherence they can tolerate. Our goal is to understand tradeoffs in accessing the data in row- or column-order and at what granularity one should share the model and data for a statistical task. We study this new tradeoff space, and discover there are tradeoffs between hardware and statistical efficiency. We argue that our tradeoff study may provide valuable information for designers of analytics engines: for each system we consider, our prototype engine can run at least one popular task at least 100x faster. We conduct our study across five architectures using popular models including SVMs, logistic regression, Gibbs sampling, and neural networks.

Citations (144)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.