S-Packing Colorings of Cubic Graphs (1403.7495v2)
Abstract: Given a non-decreasing sequence $S=(s_1,s_2, \ldots, s_k)$ of positive integers, an {\em $S$-packing coloring} of a graph $G$ is a mapping $c$ from $V(G)$ to ${s_1,s_2, \ldots, s_k}$ such that any two vertices with color $s_i$ are at mutual distance greater than $s_i$, $1\le i\le k$. This paper studies $S$-packing colorings of (sub)cubic graphs. We prove that subcubic graphs are $(1,2,2,2,2,2,2)$-packing colorable and $(1,1,2,2,3)$-packing colorable. For subdivisions of subcubic graphs we derive sharper bounds, and we provide an example of a cubic graph of order $38$ which is not $(1,2,\ldots,12)$-packing colorable.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.