Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 147 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 58 tok/s Pro
Kimi K2 201 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

S-Packing Colorings of Cubic Graphs (1403.7495v2)

Published 28 Mar 2014 in cs.DM and math.CO

Abstract: Given a non-decreasing sequence $S=(s_1,s_2, \ldots, s_k)$ of positive integers, an {\em $S$-packing coloring} of a graph $G$ is a mapping $c$ from $V(G)$ to ${s_1,s_2, \ldots, s_k}$ such that any two vertices with color $s_i$ are at mutual distance greater than $s_i$, $1\le i\le k$. This paper studies $S$-packing colorings of (sub)cubic graphs. We prove that subcubic graphs are $(1,2,2,2,2,2,2)$-packing colorable and $(1,1,2,2,3)$-packing colorable. For subdivisions of subcubic graphs we derive sharper bounds, and we provide an example of a cubic graph of order $38$ which is not $(1,2,\ldots,12)$-packing colorable.

Citations (49)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.