Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 136 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 189 tok/s Pro
GPT OSS 120B 427 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Implementation of an Automatic Sign Language Lexical Annotation Framework based on Propositional Dynamic Logic (1403.6392v2)

Published 25 Mar 2014 in cs.CL

Abstract: In this paper, we present the implementation of an automatic Sign Language (SL) sign annotation framework based on a formal logic, the Propositional Dynamic Logic (PDL). Our system relies heavily on the use of a specific variant of PDL, the Propositional Dynamic Logic for Sign Language (PDLSL), which lets us describe SL signs as formulae and corpora videos as labeled transition systems (LTSs). Here, we intend to show how a generic annotation system can be constructed upon these underlying theoretical principles, regardless of the tracking technologies available or the input format of corpora. With this in mind, we generated a development framework that adapts the system to specific use cases. Furthermore, we present some results obtained by our application when adapted to one distinct case, 2D corpora analysis with pre-processed tracking information. We also present some insights on how such a technology can be used to analyze 3D real-time data, captured with a depth device.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.