Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Implementation of an Automatic Sign Language Lexical Annotation Framework based on Propositional Dynamic Logic (1403.6392v2)

Published 25 Mar 2014 in cs.CL

Abstract: In this paper, we present the implementation of an automatic Sign Language (SL) sign annotation framework based on a formal logic, the Propositional Dynamic Logic (PDL). Our system relies heavily on the use of a specific variant of PDL, the Propositional Dynamic Logic for Sign Language (PDLSL), which lets us describe SL signs as formulae and corpora videos as labeled transition systems (LTSs). Here, we intend to show how a generic annotation system can be constructed upon these underlying theoretical principles, regardless of the tracking technologies available or the input format of corpora. With this in mind, we generated a development framework that adapts the system to specific use cases. Furthermore, we present some results obtained by our application when adapted to one distinct case, 2D corpora analysis with pre-processed tracking information. We also present some insights on how such a technology can be used to analyze 3D real-time data, captured with a depth device.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.