Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Approximate Dynamic Programming based on Projection onto the (min,+) subsemimodule (1403.4175v1)

Published 17 Mar 2014 in cs.SY and math.OC

Abstract: We develop a new Approximate Dynamic Programming (ADP) method for infinite horizon discounted reward Markov Decision Processes (MDP) based on projection onto a subsemimodule. We approximate the value function in terms of a $(\min,+)$ linear combination of a set of basis functions whose $(\min,+)$ linear span constitutes a subsemimodule. The projection operator is closely related to the Fenchel transform. Our approximate solution obeys the $(\min,+)$ Projected BeLLMan Equation (MPPBE) which is different from the conventional Projected BeLLMan Equation (PBE). We show that the approximation error is bounded in its $L_\infty$-norm. We develop a Min-Plus Approximate Dynamic Programming (MPADP) algorithm to compute the solution to the MPPBE. We also present the proof of convergence of the MPADP algorithm and apply it to two problems, a grid-world problem in the discrete domain and mountain car in the continuous domain.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.