Papers
Topics
Authors
Recent
2000 character limit reached

Predictability of extreme events in social media (1403.3616v2)

Published 14 Mar 2014 in physics.soc-ph, cs.SI, and physics.data-an

Abstract: It is part of our daily social-media experience that seemingly ordinary items (videos, news, publications, etc.) unexpectedly gain an enormous amount of attention. Here we investigate how unexpected these events are. We propose a method that, given some information on the items, quantifies the predictability of events, i.e., the potential of identifying in advance the most successful items defined as the upper bound for the quality of any prediction based on the same information. Applying this method to different data, ranging from views in YouTube videos to posts in Usenet discussion groups, we invariantly find that the predictability increases for the most extreme events. This indicates that, despite the inherently stochastic collective dynamics of users, efficient prediction is possible for the most extreme events.

Citations (30)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.