Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 138 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 189 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Threshold Analysis of Non-Binary Spatially-Coupled LDPC Codes with Windowed Decoding (1403.3583v1)

Published 14 Mar 2014 in cs.IT and math.IT

Abstract: In this paper we study the iterative decoding threshold performance of non-binary spatially-coupled low-density parity-check (NB-SC-LDPC) code ensembles for both the binary erasure channel (BEC) and the binary-input additive white Gaussian noise channel (BIAWGNC), with particular emphasis on windowed decoding (WD). We consider both (2,4)-regular and (3,6)-regular NB-SC-LDPC code ensembles constructed using protographs and compute their thresholds using protograph versions of NB density evolution and NB extrinsic information transfer analysis. For these code ensembles, we show that WD of NB-SC-LDPC codes, which provides a significant decrease in latency and complexity compared to decoding across the entire parity-check matrix, results in a negligible decrease in the near-capacity performance for a sufficiently large window size W on both the BEC and the BIAWGNC. Also, we show that NB-SC-LDPC code ensembles exhibit gains in the WD threshold compared to the corresponding block code ensembles decoded across the entire parity-check matrix, and that the gains increase as the finite field size q increases. Moreover, from the viewpoint of decoding complexity, we see that (3,6)-regular NB-SC-LDPC codes are particularly attractive due to the fact that they achieve near-capacity thresholds even for small q and W.

Citations (20)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.