Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 179 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 40 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 451 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

The Input/Output Complexity of Sparse Matrix Multiplication (1403.3551v1)

Published 14 Mar 2014 in cs.DS

Abstract: We consider the problem of multiplying sparse matrices (over a semiring) where the number of non-zero entries is larger than main memory. In the classical paper of Hong and Kung (STOC '81) it was shown that to compute a product of dense $U \times U$ matrices, $\Theta \left(U3 / (B \sqrt{M}) \right)$ I/Os are necessary and sufficient in the I/O model with internal memory size $M$ and memory block size $B$. In this paper we generalize the upper and lower bounds of Hong and Kung to the sparse case. Our bounds depend of the number $N = \mathtt{nnz}(A)+\mathtt{nnz}(C)$ of nonzero entries in $A$ and $C$, as well as the number $Z = \mathtt{nnz}(AC)$ of nonzero entries in $AC$. We show that $AC$ can be computed using $\tilde{O} \left(\tfrac{N}{B} \min\left(\sqrt{\tfrac{Z}{M}},\tfrac{N}{M}\right) \right)$ I/Os, with high probability. This is tight (up to polylogarithmic factors) when only semiring operations are allowed, even for dense rectangular matrices: We show a lower bound of $\Omega \left(\tfrac{N}{B} \min\left(\sqrt{\tfrac{Z}{M}},\tfrac{N}{M}\right) \right)$ I/Os. While our lower bound uses fairly standard techniques, the upper bound makes use of compressed matrix multiplication'' sketches, which is new in the context of I/O-efficient algorithms, and a new matrix product size estimation technique that avoids theno cancellation'' assumption.

Citations (24)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube