Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 164 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 76 tok/s Pro
Kimi K2 216 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Probabilistic Bisimulations for PCTL Model Checking of Interval MDPs (1403.2864v3)

Published 12 Mar 2014 in cs.FL and cs.LO

Abstract: Verification of PCTL properties of MDPs with convex uncertainties has been investigated recently by Puggelli et al. However, model checking algorithms typically suffer from state space explosion. In this paper, we address probabilistic bisimulation to reduce the size of such an MDPs while preserving PCTL properties it satisfies. We discuss different interpretations of uncertainty in the models which are studied in the literature and that result in two different definitions of bisimulations. We give algorithms to compute the quotients of these bisimulations in time polynomial in the size of the model and exponential in the uncertain branching. Finally, we show by a case study that large models in practice can have small branching and that a substantial state space reduction can be achieved by our approach.

Citations (11)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.