Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Privacy-Friendly Collaboration for Cyber Threat Mitigation (1403.2123v4)

Published 10 Mar 2014 in cs.CR and cs.NI

Abstract: Sharing of security data across organizational boundaries has often been advocated as a promising way to enhance cyber threat mitigation. However, collaborative security faces a number of important challenges, including privacy, trust, and liability concerns with the potential disclosure of sensitive data. In this paper, we focus on data sharing for predictive blacklisting, i.e., forecasting attack sources based on past attack information. We propose a novel privacy-enhanced data sharing approach in which organizations estimate collaboration benefits without disclosing their datasets, organize into coalitions of allied organizations, and securely share data within these coalitions. We study how different partner selection strategies affect prediction accuracy by experimenting on a real-world dataset of 2 billion IP addresses and observe up to a 105% prediction improvement.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.