Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Approximation Models of Combat in StarCraft 2 (1403.1521v1)

Published 6 Mar 2014 in cs.AI

Abstract: Real-time strategy (RTS) games make heavy use of AI, especially in the design of computerized opponents. Because of the computational complexity involved in managing all aspects of these games, many AI opponents are designed to optimize only a few areas of playing style. In games like StarCraft 2, a very popular and recently released RTS, most AI strategies revolve around economic and building efficiency: AI opponents try to gather and spend all resources as quickly and effectively as possible while ensuring that no units are idle. The aim of this work was to help address the need for AI combat strategies that are not computationally intensive. Our goal was to produce a computationally efficient model that is accurate at predicting the results of complex battles between diverse armies, including which army will win and how many units will remain. Our results suggest it may be possible to develop a relatively simple approximation model of combat that can accurately predict many battles that do not involve micromanagement. Future designs of AI opponents may be able to incorporate such an approximation model into their decision and planning systems to provide a challenge that is strategically balanced across all aspects of play.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.