Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 153 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 76 tok/s Pro
Kimi K2 169 tok/s Pro
GPT OSS 120B 441 tok/s Pro
Claude Sonnet 4.5 39 tok/s Pro
2000 character limit reached

Multi-view Face Analysis Based on Gabor Features (1403.1327v1)

Published 6 Mar 2014 in cs.CV

Abstract: Facial analysis has attracted much attention in the technology for human-machine interface. Different methods of classification based on sparse representation and Gabor kernels have been widely applied in the fields of facial analysis. However, most of these methods treat face from a whole view standpoint. In terms of the importance of different facial views, in this paper, we present multi-view face analysis based on sparse representation and Gabor wavelet coefficients. To evaluate the performance, we conduct face analysis experiments including face recognition (FR) and face expression recognition (FER) on JAFFE database. Experiments are conducted from two parts: (1) Face images are divided into three facial parts which are forehead, eye and mouth. (2) Face images are divided into 8 parts by the orientation of Gabor kernels. Experimental results demonstrate that the proposed methods can significantly boost the performance and perform better than the other methods.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.