Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Hardware software co-design of the Aho-Corasick algorithm: Scalable for protein identification? (1403.1317v1)

Published 6 Mar 2014 in cs.CE

Abstract: Pattern matching is commonly required in many application areas and bioinformatics is a major area of interest that requires both exact and approximate pattern matching. Much work has been done in this area, yet there is still a significant space for improvement in efficiency, flexibility, and throughput. This paper presents a hardware software co-design of Aho-Corasick algorithm in Nios II soft-processor and a study on its scalability for a pattern matching application. A software only approach is used to compare the throughput and the scalability of the hardware software co-design approach. According to the results we obtained, we conclude that the hardware software co-design implementation shows a maximum of 10 times speed up for pattern size of 1200 peptides compared to the software only implementation. The results also show that the hardware software co-design approach scales well for increasing data size compared to the software only approach.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.