Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

QPTAS for Geometric Set-Cover Problems via Optimal Separators (1403.0835v2)

Published 4 Mar 2014 in cs.CG

Abstract: Weighted geometric set-cover problems arise naturally in several geometric and non-geometric settings (e.g. the breakthrough of Bansal-Pruhs (FOCS 2010) reduces a wide class of machine scheduling problems to weighted geometric set-cover). More than two decades of research has succeeded in settling the $(1+\epsilon)$-approximability status for most geometric set-cover problems, except for four basic scenarios which are still lacking. One is that of weighted disks in the plane for which, after a series of papers, Varadarajan (STOC 2010) presented a clever \emph{quasi-sampling} technique, which together with improvements by Chan \etal~(SODA 2012), yielded a $O(1)$-approximation algorithm. Even for the unweighted case, a PTAS for a fundamental class of objects called pseudodisks (which includes disks, unit-height rectangles, translates of convex sets etc.) is currently unknown. Another fundamental case is weighted halfspaces in $\Re3$, for which a PTAS is currently lacking. In this paper, we present a QPTAS for all of these remaining problems. Our results are based on the separator framework of Adamaszek-Wiese (FOCS 2013, SODA 2014), who recently obtained a QPTAS for weighted independent set of polygonal regions. This rules out the possibility that these problems are APX-hard, assuming $\textbf{NP} \nsubseteq \textbf{DTIME}(2{polylog(n)})$. Together with the recent work of Chan-Grant (CGTA 2014), this settles the APX-hardness status for all natural geometric set-cover problems.

Citations (17)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.