Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Unconstrained Online Linear Learning in Hilbert Spaces: Minimax Algorithms and Normal Approximations (1403.0628v2)

Published 3 Mar 2014 in cs.LG

Abstract: We study algorithms for online linear optimization in Hilbert spaces, focusing on the case where the player is unconstrained. We develop a novel characterization of a large class of minimax algorithms, recovering, and even improving, several previous results as immediate corollaries. Moreover, using our tools, we develop an algorithm that provides a regret bound of $\mathcal{O}\Big(U \sqrt{T \log(U \sqrt{T} \log2 T +1)}\Big)$, where $U$ is the $L_2$ norm of an arbitrary comparator and both $T$ and $U$ are unknown to the player. This bound is optimal up to $\sqrt{\log \log T}$ terms. When $T$ is known, we derive an algorithm with an optimal regret bound (up to constant factors). For both the known and unknown $T$ case, a Normal approximation to the conditional value of the game proves to be the key analysis tool.

Citations (75)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.