Papers
Topics
Authors
Recent
2000 character limit reached

Approximating Persistent Homology in Euclidean Space Through Collapses (1403.0533v2)

Published 3 Mar 2014 in math.AT and cs.CG

Abstract: The \v{C}ech complex is one of the most widely used tools in applied algebraic topology. Unfortunately, due to the inclusive nature of the \v{C}ech filtration, the number of simplices grows exponentially in the number of input points. A practical consequence is that computations may have to terminate at smaller scales than what the application calls for. In this paper we propose two methods to approximate the \v{C}ech persistence module. Both are constructed on the level of spaces, i.e. as sequences of simplicial complexes induced by nerves. We also show how the bottleneck distance between such persistence modules can be understood by how tightly they are sandwiched on the level of spaces. In turn, this implies the correctness of our approximation methods. Finally, we implement our methods and apply them to some example point clouds in Euclidean space.

Citations (43)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.