Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 149 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Applications of Structural Balance in Signed Social Networks (1402.6865v1)

Published 27 Feb 2014 in cs.SI and physics.soc-ph

Abstract: We present measures, models and link prediction algorithms based on the structural balance in signed social networks. Certain social networks contain, in addition to the usual 'friend' links, 'enemy' links. These networks are called signed social networks. A classical and major concept for signed social networks is that of structural balance, i.e., the tendency of triangles to be 'balanced' towards including an even number of negative edges, such as friend-friend-friend and friend-enemy-enemy triangles. In this article, we introduce several new signed network analysis methods that exploit structural balance for measuring partial balance, for finding communities of people based on balance, for drawing signed social networks, and for solving the problem of link prediction. Notably, the introduced methods are based on the signed graph Laplacian and on the concept of signed resistance distances. We evaluate our methods on a collection of four signed social network datasets.

Citations (32)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.