Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

LSSVM-ABC Algorithm for Stock Price prediction (1402.6366v1)

Published 25 Feb 2014 in cs.CE and cs.NE

Abstract: In this paper, Artificial Bee Colony (ABC) algorithm which inspired from the behavior of honey bees swarm is presented. ABC is a stochastic population-based evolutionary algorithm for problem solving. ABC algorithm, which is considered one of the most recently swarm intelligent techniques, is proposed to optimize least square support vector machine (LSSVM) to predict the daily stock prices. The proposed model is based on the study of stocks historical data, technical indicators and optimizing LSSVM with ABC algorithm. ABC selects best free parameters combination for LSSVM to avoid over-fitting and local minima problems and improve prediction accuracy. LSSVM optimized by Particle swarm optimization (PSO) algorithm, LSSVM, and ANN techniques are used for comparison with proposed model. Proposed model tested with twenty datasets representing different sectors in S&P 500 stock market. Results presented in this paper show that the proposed model has fast convergence speed, and it also achieves better accuracy than compared techniques in most cases.

Citations (18)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.