Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Sample Complexity Bounds on Differentially Private Learning via Communication Complexity (1402.6278v4)

Published 25 Feb 2014 in cs.DS, cs.CC, and cs.LG

Abstract: In this work we analyze the sample complexity of classification by differentially private algorithms. Differential privacy is a strong and well-studied notion of privacy introduced by Dwork et al. (2006) that ensures that the output of an algorithm leaks little information about the data point provided by any of the participating individuals. Sample complexity of private PAC and agnostic learning was studied in a number of prior works starting with (Kasiviswanathan et al., 2008) but a number of basic questions still remain open, most notably whether learning with privacy requires more samples than learning without privacy. We show that the sample complexity of learning with (pure) differential privacy can be arbitrarily higher than the sample complexity of learning without the privacy constraint or the sample complexity of learning with approximate differential privacy. Our second contribution and the main tool is an equivalence between the sample complexity of (pure) differentially private learning of a concept class $C$ (or $SCDP(C)$) and the randomized one-way communication complexity of the evaluation problem for concepts from $C$. Using this equivalence we prove the following bounds: 1. $SCDP(C) = \Omega(LDim(C))$, where $LDim(C)$ is the Littlestone's (1987) dimension characterizing the number of mistakes in the online-mistake-bound learning model. Known bounds on $LDim(C)$ then imply that $SCDP(C)$ can be much higher than the VC-dimension of $C$. 2. For any $t$, there exists a class $C$ such that $LDim(C)=2$ but $SCDP(C) \geq t$. 3. For any $t$, there exists a class $C$ such that the sample complexity of (pure) $\alpha$-differentially private PAC learning is $\Omega(t/\alpha)$ but the sample complexity of the relaxed $(\alpha,\beta)$-differentially private PAC learning is $O(\log(1/\beta)/\alpha)$. This resolves an open problem of Beimel et al. (2013b).

Citations (68)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.