Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Exact Analysis of TTL Cache Networks: The Case of Caching Policies driven by Stopping Times (1402.5987v1)

Published 24 Feb 2014 in cs.PF and cs.NI

Abstract: TTL caching models have recently regained significant research interest, largely due to their ability to fit popular caching policies such as LRU. This paper advances the state-of-the-art analysis of TTL-based cache networks by developing two exact methods with orthogonal generality and computational complexity. The first method generalizes existing results for line networks under renewal requests to the broad class of caching policies whereby evictions are driven by stopping times. The obtained results are further generalized, using the second method, to feedforward networks with Markov arrival processes (MAP) requests. MAPs are particularly suitable for non-line networks because they are closed not only under superposition and splitting, as known, but also under input-output caching operations as proven herein for phase-type TTL distributions. The crucial benefit of the two closure properties is that they jointly enable the first exact analysis of feedforward networks of TTL caches in great generality.

Citations (48)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube