Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Soft Consistency Reconstruction: A Robust 1-bit Compressive Sensing Algorithm (1402.5475v1)

Published 22 Feb 2014 in cs.IT and math.IT

Abstract: A class of recovering algorithms for 1-bit compressive sensing (CS) named Soft Consistency Reconstructions (SCRs) are proposed. Recognizing that CS recovery is essentially an optimization problem, we endeavor to improve the characteristics of the objective function under noisy environments. With a family of re-designed consistency criteria, SCRs achieve remarkable counter-noise performance gain over the existing counterparts, thus acquiring the desired robustness in many real-world applications. The benefits of soft decisions are exemplified through structural analysis of the objective function, with intuition described for better understanding. As expected, through comparisons with existing methods in simulations, SCRs demonstrate preferable robustness against noise in low signal-to-noise ratio (SNR) regime, while maintaining comparable performance in high SNR regime.

Citations (4)

Summary

We haven't generated a summary for this paper yet.