Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Topicality and Social Impact: Diverse Messages but Focused Messengers (1402.5443v1)

Published 21 Feb 2014 in cs.SI, cs.CY, and physics.soc-ph

Abstract: Are users who comment on a variety of matters more likely to achieve high influence than those who delve into one focused field? Do general Twitter hashtags, such as #lol, tend to be more popular than novel ones, such as #instantlyinlove? Questions like these demand a way to detect topics hidden behind messages associated with an individual or a hashtag, and a gauge of similarity among these topics. Here we develop such an approach to identify clusters of similar hashtags by detecting communities in the hashtag co-occurrence network. Then the topical diversity of a user's interests is quantified by the entropy of her hashtags across different topic clusters. A similar measure is applied to hashtags, based on co-occurring tags. We find that high topical diversity of early adopters or co-occurring tags implies high future popularity of hashtags. In contrast, low diversity helps an individual accumulate social influence. In short, diverse messages and focused messengers are more likely to gain impact.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Lilian Weng (22 papers)
  2. Filippo Menczer (102 papers)
Citations (62)

Summary

We haven't generated a summary for this paper yet.