Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 27 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 117 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 34 tok/s Pro
2000 character limit reached

Caching and Coded Multicasting: Multiple Groupcast Index Coding (1402.4572v2)

Published 19 Feb 2014 in cs.IT and math.IT

Abstract: The capacity of caching networks has received considerable attention in the past few years. A particularly studied setting is the case of a single server (e.g., a base station) and multiple users, each of which caches segments of files in a finite library. Each user requests one (whole) file in the library and the server sends a common coded multicast message to satisfy all users at once. The problem consists of finding the smallest possible codeword length to satisfy such requests. In this paper we consider the generalization to the case where each user places $L \geq 1$ requests. The obvious naive scheme consists of applying $L$ times the order-optimal scheme for a single request, obtaining a linear in $L$ scaling of the multicast codeword length. We propose a new achievable scheme based on multiple groupcast index coding that achieves a significant gain over the naive scheme. Furthermore, through an information theoretic converse we find that the proposed scheme is approximately optimal within a constant factor of (at most) $18$.

Citations (81)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.