Papers
Topics
Authors
Recent
2000 character limit reached

A Kernel Independence Test for Random Processes (1402.4501v3)

Published 18 Feb 2014 in stat.ML

Abstract: A new non parametric approach to the problem of testing the independence of two random process is developed. The test statistic is the Hilbert Schmidt Independence Criterion (HSIC), which was used previously in testing independence for i.i.d pairs of variables. The asymptotic behaviour of HSIC is established when computed from samples drawn from random processes. It is shown that earlier bootstrap procedures which worked in the i.i.d. case will fail for random processes, and an alternative consistent estimate of the p-values is proposed. Tests on artificial data and real-world Forex data indicate that the new test procedure discovers dependence which is missed by linear approaches, while the earlier bootstrap procedure returns an elevated number of false positives. The code is available online: https://github.com/kacperChwialkowski/HSIC .

Citations (59)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Github Logo Streamline Icon: https://streamlinehq.com