Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 72 tok/s
Gemini 2.5 Pro 57 tok/s Pro
GPT-5 Medium 43 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 219 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Friendship Prediction in Composite Social Networks (1402.4033v1)

Published 17 Feb 2014 in cs.SI and physics.soc-ph

Abstract: Friendship prediction is an important task in social network analysis (SNA). It can help users identify friends and improve their level of activity. Most previous approaches predict users' friendship based on their historical records, such as their existing friendship, social interactions, etc. However, in reality, most users have limited friends in a single network, and the data can be very sparse. The sparsity problem causes existing methods to overfit the rare observations and suffer from serious performance degradation. This is particularly true when a new social network just starts to form. We observe that many of today's social networks are composite in nature, where people are often engaged in multiple networks. In addition, users' friendships are always correlated, for example, they are both friends on Facebook and Google+. Thus, by considering those overlapping users as the bridge, the friendship knowledge in other networks can help predict their friendships in the current network. This can be achieved by exploiting the knowledge in different networks in a collective manner. However, as each individual network has its own properties that can be incompatible and inconsistent with other networks, the naive merging of all networks into a single one may not work well. The proposed solution is to extract the common behaviors between different networks via a hierarchical Bayesian model. It captures the common knowledge across networks, while avoiding negative impacts due to network differences. Empirical studies demonstrate that the proposed approach improves the mean average precision of friendship prediction over state-of-the-art baselines on nine real-world social networking datasets significantly.

Citations (9)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.