Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Testing probability distributions underlying aggregated data (1402.3835v1)

Published 16 Feb 2014 in cs.DS, cs.DM, math.PR, math.ST, and stat.TH

Abstract: In this paper, we analyze and study a hybrid model for testing and learning probability distributions. Here, in addition to samples, the testing algorithm is provided with one of two different types of oracles to the unknown distribution $D$ over $[n]$. More precisely, we define both the dual and cumulative dual access models, in which the algorithm $A$ can both sample from $D$ and respectively, for any $i\in[n]$, - query the probability mass $D(i)$ (query access); or - get the total mass of ${1,\dots,i}$, i.e. $\sum_{j=1}i D(j)$ (cumulative access) These two models, by generalizing the previously studied sampling and query oracle models, allow us to bypass the strong lower bounds established for a number of problems in these settings, while capturing several interesting aspects of these problems -- and providing new insight on the limitations of the models. Finally, we show that while the testing algorithms can be in most cases strictly more efficient, some tasks remain hard even with this additional power.

Citations (41)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.