Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
43 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Dropout Rademacher Complexity of Deep Neural Networks (1402.3811v2)

Published 16 Feb 2014 in cs.NE and stat.ML

Abstract: Great successes of deep neural networks have been witnessed in various real applications. Many algorithmic and implementation techniques have been developed, however, theoretical understanding of many aspects of deep neural networks is far from clear. A particular interesting issue is the usefulness of dropout, which was motivated from the intuition of preventing complex co-adaptation of feature detectors. In this paper, we study the Rademacher complexity of different types of dropout, and our theoretical results disclose that for shallow neural networks (with one or none hidden layer) dropout is able to reduce the Rademacher complexity in polynomial, whereas for deep neural networks it can amazingly lead to an exponential reduction of the Rademacher complexity.

Citations (67)

Summary

We haven't generated a summary for this paper yet.