Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 172 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 94 tok/s Pro
Kimi K2 194 tok/s Pro
GPT OSS 120B 451 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Analysis of Compressed Sensing with Spatially-Coupled Orthogonal Matrices (1402.3215v1)

Published 13 Feb 2014 in cs.IT and math.IT

Abstract: Recent development in compressed sensing (CS) has revealed that the use of a special design of measurement matrix, namely the spatially-coupled matrix, can achieve the information-theoretic limit of CS. In this paper, we consider the measurement matrix which consists of the spatially-coupled \emph{orthogonal} matrices. One example of such matrices are the randomly selected discrete Fourier transform (DFT) matrices. Such selection enjoys a less memory complexity and a faster multiplication procedure. Our contributions are the replica calculations to find the mean-square-error (MSE) of the Bayes-optimal reconstruction for such setup. We illustrate that the reconstruction thresholds under the spatially-coupled orthogonal and Gaussian ensembles are quite different especially in the noisy cases. In particular, the spatially coupled orthogonal matrices achieve the faster convergence rate, the lower measurement rate, and the reduced MSE.

Citations (14)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube