Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 150 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

A Bayesian Characterization of Relative Entropy (1402.3067v2)

Published 13 Feb 2014 in cs.IT, math-ph, math.IT, math.MP, math.PR, and quant-ph

Abstract: We give a new characterization of relative entropy, also known as the Kullback-Leibler divergence. We use a number of interesting categories related to probability theory. In particular, we consider a category FinStat where an object is a finite set equipped with a probability distribution, while a morphism is a measure-preserving function $f: X \to Y$ together with a stochastic right inverse $s: Y \to X$. The function $f$ can be thought of as a measurement process, while s provides a hypothesis about the state of the measured system given the result of a measurement. Given this data we can define the entropy of the probability distribution on $X$ relative to the "prior" given by pushing the probability distribution on $Y$ forwards along $s$. We say that $s$ is "optimal" if these distributions agree. We show that any convex linear, lower semicontinuous functor from FinStat to the additive monoid $[0,\infty]$ which vanishes when $s$ is optimal must be a scalar multiple of this relative entropy. Our proof is independent of all earlier characterizations, but inspired by the work of Petz.

Citations (60)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube