Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Regular Combinators for String Transformations (1402.3021v1)

Published 13 Feb 2014 in cs.FL

Abstract: We focus on (partial) functions that map input strings to a monoid such as the set of integers with addition and the set of output strings with concatenation. The notion of regularity for such functions has been defined using two-way finite-state transducers, (one-way) cost register automata, and MSO-definable graph transformations. In this paper, we give an algebraic and machine-independent characterization of this class analogous to the definition of regular languages by regular expressions. When the monoid is commutative, we prove that every regular function can be constructed from constant functions using the combinators of choice, split sum, and iterated sum, that are analogs of union, concatenation, and Kleene-*, respectively, but enforce unique (or unambiguous) parsing. Our main result is for the general case of non-commutative monoids, which is of particular interest for capturing regular string-to-string transformations for document processing. We prove that the following additional combinators suffice for constructing all regular functions: (1) the left-additive versions of split sum and iterated sum, which allow transformations such as string reversal; (2) sum of functions, which allows transformations such as copying of strings; and (3) function composition, or alternatively, a new concept of chained sum, which allows output values from adjacent blocks to mix.

Citations (52)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.