Papers
Topics
Authors
Recent
2000 character limit reached

Near Oracle Performance and Block Analysis of Signal Space Greedy Methods (1402.2601v2)

Published 11 Feb 2014 in math.NA, cs.IT, and math.IT

Abstract: Compressive sampling (CoSa) is a new methodology which demonstrates that sparse signals can be recovered from a small number of linear measurements. Greedy algorithms like CoSaMP have been designed for this recovery, and variants of these methods have been adapted to the case where sparsity is with respect to some arbitrary dictionary rather than an orthonormal basis. In this work we present an analysis of the so-called Signal Space CoSaMP method when the measurements are corrupted with mean-zero white Gaussian noise. We establish near-oracle performance for recovery of signals sparse in some arbitrary dictionary. In addition, we analyze the block variant of the method for signals whose supports obey a block structure, extending the method into the model-based compressed sensing framework. Numerical experiments confirm that the block method significantly outperforms the standard method in these settings.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.