Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 54 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 105 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

Leveraging Long-Term Predictions and Online-Learning in Agent-based Multiple Person Tracking (1402.2016v2)

Published 10 Feb 2014 in cs.CV

Abstract: We present a multiple-person tracking algorithm, based on combining particle filters and RVO, an agent-based crowd model that infers collision-free velocities so as to predict pedestrian's motion. In addition to position and velocity, our tracking algorithm can estimate the internal goals (desired destination or desired velocity) of the tracked pedestrian in an online manner, thus removing the need to specify this information beforehand. Furthermore, we leverage the longer-term predictions of RVO by deriving a higher-order particle filter, which aggregates multiple predictions from different prior time steps. This yields a tracker that can recover from short-term occlusions and spurious noise in the appearance model. Experimental results show that our tracking algorithm is suitable for predicting pedestrians' behaviors online without needing scene priors or hand-annotated goal information, and improves tracking in real-world crowded scenes under low frame rates.

Citations (32)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.