Papers
Topics
Authors
Recent
2000 character limit reached

Leveraging Long-Term Predictions and Online-Learning in Agent-based Multiple Person Tracking (1402.2016v2)

Published 10 Feb 2014 in cs.CV

Abstract: We present a multiple-person tracking algorithm, based on combining particle filters and RVO, an agent-based crowd model that infers collision-free velocities so as to predict pedestrian's motion. In addition to position and velocity, our tracking algorithm can estimate the internal goals (desired destination or desired velocity) of the tracked pedestrian in an online manner, thus removing the need to specify this information beforehand. Furthermore, we leverage the longer-term predictions of RVO by deriving a higher-order particle filter, which aggregates multiple predictions from different prior time steps. This yields a tracker that can recover from short-term occlusions and spurious noise in the appearance model. Experimental results show that our tracking algorithm is suitable for predicting pedestrians' behaviors online without needing scene priors or hand-annotated goal information, and improves tracking in real-world crowded scenes under low frame rates.

Citations (32)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.