Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 150 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 113 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 444 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Sequential Model-Based Ensemble Optimization (1402.0796v1)

Published 4 Feb 2014 in cs.LG and stat.ML

Abstract: One of the most tedious tasks in the application of machine learning is model selection, i.e. hyperparameter selection. Fortunately, recent progress has been made in the automation of this process, through the use of sequential model-based optimization (SMBO) methods. This can be used to optimize a cross-validation performance of a learning algorithm over the value of its hyperparameters. However, it is well known that ensembles of learned models almost consistently outperform a single model, even if properly selected. In this paper, we thus propose an extension of SMBO methods that automatically constructs such ensembles. This method builds on a recently proposed ensemble construction paradigm known as agnostic Bayesian learning. In experiments on 22 regression and 39 classification data sets, we confirm the success of this proposed approach, which is able to outperform model selection with SMBO.

Citations (30)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.