Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 30 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Sequential Model-Based Ensemble Optimization (1402.0796v1)

Published 4 Feb 2014 in cs.LG and stat.ML

Abstract: One of the most tedious tasks in the application of machine learning is model selection, i.e. hyperparameter selection. Fortunately, recent progress has been made in the automation of this process, through the use of sequential model-based optimization (SMBO) methods. This can be used to optimize a cross-validation performance of a learning algorithm over the value of its hyperparameters. However, it is well known that ensembles of learned models almost consistently outperform a single model, even if properly selected. In this paper, we thus propose an extension of SMBO methods that automatically constructs such ensembles. This method builds on a recently proposed ensemble construction paradigm known as agnostic Bayesian learning. In experiments on 22 regression and 39 classification data sets, we confirm the success of this proposed approach, which is able to outperform model selection with SMBO.

Citations (30)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.